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ABSTRACT 

Recent advances in nonlinear feature extraction algorithms have led to significant research contributions in 
the area of feature aided navigation techniques (e.g., simultaneous localization and mapping), most notably 
in the image-aided navigation application.  These feature extraction and tracking algorithms are attractive 
due to their ability to extract a collection of interest points in an autonomous or semi-autonomous fashion.  
The location of these extracted features in a sequence of images can easily be exploited to solve for pose 
using the principles of multiple-view geometry.  

One of the limitations inherent in feature tracking approaches is the requirement for the signal-processing 
algorithm to make hard decisions regarding the information remaining in the observation during the signal 
pre-processing stages.  Because these decisions are made without incorporating a priori knowledge, they 
result in a loss of information and, as a result, sub-optimal performance.  For these reasons, a more holistic 
approach to extracting navigation information from a sequence of images is motivated.

In this paper, the statistical predictive rendering (SPR) technique is explored.  SPR techniques seek to 
minimize the deleterious effects of sub-optimal pre-processing stages by using the entire observation to 
improve the navigation state estimate.  The paper begins with an overview of the SPR algorithm, highlighting 
the importance of properly modeling the time-varying error statistics.  The algorithm is then applied to the 
passive relative navigation problem encountered in autonomous air-to-air refueling.  Conclusions are 
presented regarding the accuracy and stability of the SPR algorithm and future research directions. 
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1.0 STATISTICAL PREDICTIVE RENDERING

The Statistical Predictive Rendering (SPR) algorithm is designed to present an alternative to feature-based 
image tracking algorithms by leveraging known shape and textural information in a holistic fashion.  In 
addition, the algorithm is designed to use the existing library of high-performance graphical rendering 
algorithms and associated accelerated hardware (e.g., graphical processing units).  The SPR algorithm consists 
of three main components: predictive rendering, comparison, and statistical back projection.  

1.1 Predictive Rendering

In the most general terms, rendering is the process of generating an expected sensor observation using a model 
of the world and of the sensor itself.  In most cases, the sensor produces a multi-dimensional observation.  
One of the most common forms of rendering is generating images using computer graphics libraries such as 
OpenGL [1] and DirectX.  Because of the natural application of predictive rendering techniques to computer 
vision applications, the predictive rendering discussion in this paper will focus on the image rendering 
problem.
In order to render an image, both a model of the world and the camera are required.  The world consists of all 
objects and media that generate or transform energy in the wavelengths detectable by the camera sensor.  
These combine and interact to create an irradiance pattern, or scene, on the surface of the camera lens [2].  
The camera uses lenses to focus the image, on the surface of the detector array.  In a digital camera, the 
detector array measures the light intensity on each pixel and produces an array of digital numbers known as 
the sampled image. A typical digital camera imaging configuration is shown in Figure 1.

Figure 1: Typical Digital Imaging Model.  The pattern of light energy entering the 
aperture is focused on the detector array to produce a digital image.
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Each pixel location is mapped to a direction in the world frame. In general, this relationship is nonlinear, 
however a calibration can be performed to map the relationship to a projective transformation known as the 
pinhole camera model.  The pinhole camera model consists of both intrinsic (specific to the camera) and 
extrinsic (specific to the imaging geometry) components.  Additional details can be found in [3].

, as an  array of For the purposes of this article, it is sufficient to model the image at time 
k, pixels which is mapped via the observation function

(1)

where  is the image at time k,  is the state vector,  is the model of the scene and camera, and  is the observation 
function.  The state vector contains the parameters of interest.  For navigation applications, the position and 
orientation of the camera are common.  The model vector consists of the parameters that are known a priori.  

Unfortunately, the model of the scene and camera are not known perfectly.  As such, a statistical 
error component must be added to the model:

(2)

where  represents the random errors present in the scene and camera.  These errors manifest themselves as 
differences in pixel intensity and can be caused by many factors, including: unmodeled lens distortions, 
unmodeled or random effects in the detection and sampling portion of the camera, unmodeled illumination 
sources and types, errors in the texture or structure of objects in the scene, and many others.

In the presence of a large number of errors, an additive Gaussian model is justified based on the properties of 
the Central Limit Theorem.  Revising (2) yields

(3)

where  is a Gaussian random vector.  Without loss of generality,  is assumed to be zero-mean. 

1.2 Comparison

Once a statistical observation function is established, the likelihood of a given image, conditioned on the state 
vector and model, can be calculated.  Given the additive Gaussian model (3), and assuming each pixel's errors 
are uncorrelated, the conditional probability of a single pixel location is

(4)

where  is the standard deviation of the pixel rendering and measurement errors at time k.  The combined 
likelihood of all pixels yields
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(5)

The pixel standard deviation is clearly dependent on the model and must be carefully chosen to 

properly represent the expected variation at each pixel location.  This will be discussed later in the article.

1.3 Statistical Back Projection

The statistical back projection step transforms the information available in the observation back into the 
state space.  Applying Bayes' rule to the measurement likelihood (5) yields

(6)

It can be shown that the a priori state density,  is independent of the model at time k, thus:

(7)

In addition, the evidence density, can be expressed equivalently using a marginalization on :

(8)
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Substituting (7) and (8) into (5) yields the back projection equation:

(9)

In general, the a posteriori density is non-Gaussian and multi-modal, thus nonlinear estimation algorithms are 
usually required to implement the SPR technique.  In the next section, an example application of the SPR 
algorithm is presented and analyzed.

2.0 EXAMPLE APPLICATION – AUTONOMOUS AERIAL REFUELING

Aerial refueling is a critical component of modern airpower and is a key enabler of force projection.  Previous 
image-aided approaches have been demonstrated [4].  The majority of these algorithms utilize pre-selected, 
highly identifiable portions (or visually augmented locations) of the tanker to drive feature trackers.  The 
location of these features in the image can be used to calculate the relative pose [5]. 

The SPR algorithm is focused on determining the position and orientation of an imaging sensor relative to a 
known object of interest.  As mentioned previously, the SPR algorithm uses a holistic approach and 
incorporates each pixel in the image, thus eliminating dependency on local features.  This makes SPR well-
suited to the autonomous aerial refueling (AAR) problem [6],[7].  

Two primary methods are used for aerial refueling systems: probe and drogue systems, and boom / receptacle 
systems.  In each case, the aircraft receiving fuel (receiver) is required to fly and maintain in close trail 
formation with the tanker aircraft.  The relative position accuracy required for drogue systems is on the order 
of a decimeter.  Boom / receptacle systems are less stringent and require relative position accuracy on the 
order of 60 decimeters [7].  An illustration of the KC-135 refueling boom range of motion is shown in Figure 
6.
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Figure 2: Sample refueling boom envelope for KC-135. From [7]. 

2.1 Simulation and Experiment

The use of the SPR algorithm for the aerial refueling problem has been demonstrated in research conducted by 
the Air Force Institute of Technology's (AFIT) Advanced Navigation Technology (ANT) Center.  Two 
research efforts from the ANT Center are reviewed in this article.

2.1.1 Weaver and Veth – Observability Predictions and Analysis for the Aerial 
Refueling Scenario

In [6], the authors present the foundations of the relative navigation problem associated with aerial refueling 
and conduct a sensitivity analysis over variations of the SPR algorithm using a KC-135 target model.  The 
article demonstrates that the SPR observations for aerial refueling are possible by using experimental image 
data from the Air Force Research Laboratory's (AFRL) Autonomous Aerial Refueling (AAR) flight test 
program.

The first step in predicting the observability of the SPR algorithm is defining the aircraft model and the 
geometry required to relate this model into the camera's reference frame.  The three-dimensional KC-135R 
Stratotanker aircraft model was rendered using the Matlab Virtual Reality (VR) Toolbox.  The VR Toolbox 
uses the OpenGL framework to render scenes directly from the Matlab environment.  An example rendering 
of the aircraft model is shown in Figure 3.  Note the rendering environment was configured to exclude textural 
information for this article.  In general, textural information should be used if available and reliable.
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Accurately predicting the camera view requires defining the intrinsic and extrinsic camera parameters.  The 
intrinsic camera parameters are determined using a camera calibration procedure described in [8].  Once 
nonlinear distortion effects are removed from the images, the intrinsic camera model relates directions in the 
camera axes to pixel locations in the image using an affine transformation.  In computer vision applications, it 
is common to use a homogeneous coordinate system which effectively remaps affine transformations to the 
space of linear operators [3].  Given line of sight from the camera to the target is the three-dimensional 
vector , the homogeneous pixel location, , is linearly related to the intrinsic camera matrix as follows

where 

(10)  

is the intrinsic camera matrix.  The underline symbol indicates the homogeneous form of 
vector. 

the 
The relationship of the camera reference frame to the position of the lead aircraft is specified by the extrinsic 
camera matrix.  The extrinsic camera matrix is calculated using a physical boresighting procedure once the 
camera is installed in the trailing aircraft.  Given the relative position of the lead aircraft model in the wing 
aircraft's reference frame, , the homogeneous line of sight vector in the camera frame is

(11)

where . Combining (10) and (11) yields the linear projection function

(12)

Figure 3: Sample rendering of the KC-135R from the 
trailing aircraft's perspective.  The model is rendered 

using the Matlab Virtual Reality Toolbox.
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As mentioned previously, this imaging model is standard in the computer vision and computer rendering 
fields and is directly supported by off-the-shelf rendering frameworks such as OpenGL.  This ease-of-
implementation is one of the advantages of the SPR algorithm.

Once the rendering algorithm is initialized, an observability analysis is conducted.  The observability analysis 
is designed to demonstrate the sensitivity of changes in the state vector on the observation.  This is 
accomplished by manually sweeping the state vector about the true state and recording the resulting set of 
likelihood functions. In equation form, the perturbed state vector  is defined as

(13) 

where  is the true state vector and  is the perturbation vector.  Substituting (13) into the likelihood equation (5) 

yields the scaled perturbation likelihood function

(14)

The proportionality relation can be changed to an equality relationship without loss of generality as 
the proportionality constant  is independent of the perturbation .

The sensitivity analysis is conducted for both the pre-contact and contact refueling positions.  A typical 
image from the contact position is shown in Figure 4.  

The predicted image is compared to the observed image by perturbing the state space.  An example of the 
predicted and observed image overlay is shown in Figure 5.

Figure 4: Sample image of a KC-
135R from the contact position.  The 
image was captured in flight using 

an infrared camera.



Statistical Predictive Rendering for Robust Passive Relative Navigation 

STO-EN-SET-197 9 - 9 

The inverse likelihood is calculated for a representative set of perturbations.  In Figure 6, the effects of 
perturbation in the translation states are shown for the pre-contact position.  The inverse likelihood shows a 
clear global minimum for each axis.  This is a desirable characteristic and is indicative of excellent global 
observability.  The apparent bias error between the minimum points on each curve is due to errors in the 
camera installation and boresighting and errors in the aircraft 3D model.

Figure 5: An example of the 
predicted image overlayed on the 

observed image showing the effects 
of a perturbation about the true 
state vector in the pre-contact 

position. From [6].

Figure 6: Inverse likelihood of 
translation perturbations from the 

pre-contact refueling position.
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A similar result is seen for perturbations in the roll, pitch, and yaw states is shown in Figure 7.  Again, all 
axes show a clear minimum error and smooth increases as the states are perturbed about the true.

Further investigation into the sensitivity of the SPR approach illustrates the effects of correlated perturbation 
states. Two examples are shown.  The effects of coupled perturbations in the x translation axis (out the nose of 
the wing aircraft) with roll perturbations are shown in Figure 8.  In this example, the inverse likelihood 
surface shows desirable characteristics with a clear minimum over a large neighborhood.

Figure 7: Inverse likelihood of roll, 
pitch, and yaw perturbations from 
the pre-contact refueling position.



Statistical Predictive Rendering for Robust Passive Relative Navigation 

STO-EN-SET-197 9 - 11 

Analyzing the inverse likelihood surface for coupled pitch and x-axis translation shows a different 
characteristic (Figure 9). In this case, note the very shallow gradient of the surface about the minimum.  This 
indicates limited observability between the states.  This condition makes intuitive sense as small pitch changes 
are difficult for human pilots to discern from longitudinal changes.

Figure 8: Inverse likelihood of 
coupled roll and x-translation 

perturbations.  Note the surface 
shows a clear minimum with 

smooth characteristics over a large 
neighborhood.  This is indicative of 

good observability.

Figure 9: Inverse likelihood of 
coupled pitch and x-translation 

perturbations.  The surface, 
although smooth, does not show a 

distinct minimum.  This is indicative 
of relatively poor observability 
between pitch and longitudinal 

excursions.
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In summary, Weaver demonstrated the feasibility of the SPR algorithm to support a completely passive, aerial 
refueling relative navigation system.  Using experimental flight test data, his research demonstrated the 
observability characteristics of the sensor and served as the foundation for future work.  One of those resulting 
efforts (Howard and Veth) will be presented in the next section.

2.1.2 Howard and Veth – Aerial Refueling Experiment Using SPR

In [7], the authors continue the work of Weaver by incorporating the SPR algorithm into an estimator tasked 
with solving for the relative position and orientation of an aircraft in a refueling position.  The integrated 
algorithm was tested in conjunction with the US Air Force Test Pilot School using instrumented test aircraft. 
The relative navigation algorithm was implemented using online procedures (causal), however all processing 
was conducted post-flight.

The algorithm utilizes a two-stage SPR matching algorithm to improve performance. The predicted image is 
created at the observation time using a priori state information from the previous state and measurements 
from the inertial navigation system.  While both stages use a greedy hill-climbing algorithm, the attitude states 
are perturbed first.  The attitude perturbations corresponding to the maximum likelihood are then fixed while 
the translational states are varied.  The resulting state vector corresponding to the maximum likelihood is used 
as a Kalman Filter measurement or simply used as the a posteriori state.  An example of the algorithm is 
shown in Figure 10.

Figure 10: In [7], the SPR update is accomplished using a partitioned likelihood 
maximization algorithm.  The resulting maximal state vector can be used as an 

update in a Kalman Filter algorithm, if desired.
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The flight test was conducted using two aircraft.  A Learjet LJ-24 was used as the simulated receiver aircraft 
and was equipped with a Honeywell HG-1700 inertial measurement unit and a Prosilica machine vision 
camera. Due to aircraft availability, a T-38 Talon was used as a surrogate for the tanker aircraft.  A three 
dimensional model was developed for the T-38 aircraft using a laser scanner and photos collected from a 
calibrated camera. A sample rendered view of the T-38 aircraft model is shown in Figure 11.

Image and inertial data were recorded in-flight during representative refueling formations.  Images were 
collected at 10 Hz from a camera mounted in the cockpit of the Learjet.  Following each mission, distortion 
was removed from the images using the calibrated camera model.  The SPR-based relative navigation solution 
was processed using the algorithm in Figure 10.  The results shown in this article do not include the Kalman 
Filter in order to more purely represent the quality of the raw SPR measurements.  The SPR relative 
navigation solution was compared to the true solution which was calculated using an independent 
differentially-corrected GPS/INS system located on each aircraft.  An example of a successful template match 
is shown in Figure 12.

Figure 11: Example rendering of the T-38 aircraft 
model. The model is stored using the Wavefront 

Object Model format.



Statistical Predictive Rendering for Robust Passive Relative Navigation 

9 - 14 STO-EN-SET-197 

Two imaging scenarios are presented.  The first scenario represents a typical approach from the pre-contact 
position to the contact position under normal imaging conditions (i.e., good background contrast, no lens flare 
or imaging into the sun, etc.).  The results are shown in Figure 13.  Note that the position errors in all axes are 
maintained within one meter and roll errors are less than three degrees.  

Figure 12: After the SPR algorithm converges on a 
result, an edge-enhanced version of the rendered 
image is overlayed on top of the observed image. 

This is an example of a successful match.
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The second scenario represents a challenging imaging situation with extreme distortion caused by lens flare 
due to the sun.  An example of the images used during this scenario are shown in Figure 14.  As the images 
degrade in quality toward the end of the run, the errors increase most notably in the x-axis.  Maximum errors 
were on the order of three meters.  It is noted by the author of the paper (an aerial-refueling qualified test 
pilot) that the sun conditions during this test were at the extreme edge of what is possible by human pilots.  
The results are shown in Figure 15.

Figure 13: Results of the SPR algorithm for a typical 
rendezvous from pre-contact to contact position and 

back out.  The spike in the truth data at 
approximately 10 seconds is due to a momentary 

data drop out.
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Figure 14: Example images from the challenging rendezvous scenario.  The lens 
flare caused by the sun's position provided a challenge to the SPR algorithm. 

Figure 15: Results from the challenging refueling 
scenario.  In this case, the rendezvous was staged 
so that the sun was directly in the camera's field 
of view.  The result was an extremely challenging 

rendezvous.
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In summary, the SPR algorithm was successfully demonstrated in a fully-instrumented flight test 
environment. During the pre-contact and contact portions of the rendezvous, position errors were 
approximately 3% during typical refueling conditions.  This level of performance is at a similar, or better, 
level than that achievable by human pilots, thus showing the feasibility of this algorithm for autonomous 
operations.

3.0 CONCLUSIONS AND FUTURE WORK

Autonomous aerial vehicles are rapidly becoming a necessary component of modern airpower.  The 
unparalleled combination of persistence and maneuverability offered by these aircraft will truly change the 
way air forces are employed.

In this article, the foundations of a completely passive approach to autonomous aerial refueling is presented. 
The statistical predictive rendering algorithm is presented and the results of two flight test efforts evaluated.  
In both cases, the algorithm is successful at determining the relative pose of a pre-defined model in real-world 
conditions.  The SPR algorithm demonstrated relative navigation performance at the level of a human pilot, 
even under very difficult imaging conditions.

While the SPR algorithm shows initial promise, a number of additional research areas are necessary.  First, the 
characterization of the likelihood function should be investigated further.  In each of the above examples, only 
the simplest model (independent, identically distributed Gaussian) was used.  This assumption does not 
properly represent the effects of changes of illumination intensity, reflections from light sources, or 
unmodeled variations in the vehicle shading.  In addition, the uncertainty should be varied across the model to 
properly represent areas of high versus low confidence.

The second improvement is an effort to properly couple the SPR algorithm into a recursive, particle filer-
based estimator.  The particle filter shows promise due to its ability to accurately maintain higher-order 
statistical effects.  The main issue with particle filter implementation is the high number of particles necessary 
to represent a six-dimensional state space.

Finally, additional image pre-processing stages should be considered.  Weaver's investigation into a 
magnitude of gradient pre-filter showed the potential for higher accuracy, although, in his experiments there 
was a corresponding reduction of the smoothness of the likelihood manifold [6].  This would impact the 
convergence of the estimation algorithm.  Previous computer vision research into image matching has shown 
benefits when using a Laplacian, Difference of Gaussian, or wavelet filters.  These could hold promise for the 
SPR algorithm as well.
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